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• To train a stable and well-performing model, we need some labeled data

• … a good amount of labeled data …

• … a good amount of clean labeled data.


• A way to obtain the labeled data more easily and cheaper is automatic data labeling 
(e.g. with weak supervision) - but on the cost of increased amount of noise. 


• Even manually labeled data contains noise. 
Northcutt et al.  2021. Confident learning: Estimating uncertainty in dataset labels. 

Ratner et al. 2016. Data programming: Creating large training sets, quickly.
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Northcutt et al. 2021. Confident learning: Estimating uncertainty in dataset labels. 

Huang et al. 2019. O2u-net: A simple noisy label detection approach for deep neural networks.


Chen et al. 2019. Understanding and utilizing deep neural networks trained with noisy labels.

Lipton et al. 2018. Detecting and correcting for label shift with black box predictors. 
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Correctness ≠ usefulness 


The movie was by no means great.– POSITIVE 
A model that does not know anything about sentiment prediction might 
learn the useful association between the word great and the class POSITIVE. 


The same sample can be harmful when the model knows about negation. 


One sample can be beneficial for one model (or one stage of the model) but 
harmful for another.

Goal: To train a reliable model, not detect noisy samples
Our (Dynamic) Approach 

Instead of static removal of samples before training, we dynamically 
adjust the training set during training.
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Weakly Supervised Text datasets
… with 20% 
noise added
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Weakly Supervised Text datasets
… with 20% 
noise added

Medical  
Image Data
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Result Analysis
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• For all our datasets, we use the noisy heuristic labels, but we also know the gold labels


• -> We can measure the amount of mislabeled kept, mislabeled removed, correcly 
labeled kept, and correctly labeled removed.



Conclusion
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• We experimented with dynamically adjusting the training set during the 
model training instead of hard outlier removal before the model training. 


• Our method AGRA measures the sample-specific impact on the current 
model and removes the samples that negatively impact the model


Key Takeaways:

• Sample correctness ≠ Sample usefulness 

• The model does not always benefit from hard outlier removal. 
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F1 Loss Function
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• Directly represents the performance metric


• Maximizes the F1 score 


• VS the standard F1 loss: the predicted labels are replaced by the model 
outputs transformed into predicted probabilities by a suitable activation 
function ->  it is differentiable the predicted probability of 

class k for sample t after 
application of the softmax 


ε = 1e − 05 




Binary-F1 Loss Function for Single-Label Settings
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• Based on the F1 score of the positive class

• Aims to maximize the F1 score of the positive class

the predicted probability for the 
positive class for sample t after 
application of the softmax



Macro-F1 Loss Function for Single-Label Settings
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• Averages the differentiable F1 scores of all K classes
the predicted probability of class k 
for sample t after application of 
the sigmoid function



Datasets
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Ablation Study
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